

 1 Events from V 1.60

Event Monitor
– this section is intended to be read in conjunction

with the Introduction

Television Systems Limited.
Vanwall Road, Maidenhead, Berkshire, SL6 4UB

Telephone +44 (0)1628 676200, FAX +44 (0)1628 676299

Events from V 1.60 2 V2

Event Monitor

1.0 Introduction

2.0 Adding an Event

3.0 SNMP Trap – only implemented on the product TMC-1

4.0 TSL UMD Input

5.0 Trigger Action

Appendix 1 – TSL MIB

These enhanced features are only available from TallyMan Version 1.51 (December 2006).

 3 Events from V 1.60

1.0 Introduction

This feature allows enhanced control of tallies and routers. In addition it is possible to upload
a new TallyMan configuration file on receipt of an incoming trigger (tally/GPI/router change).

2.0 Adding an Event

Click on Add New Component on the main screen.

From the Add New Component list select Event Monitor.

When a new
component is
added to the
system it must be
given a Name
before the OK
button becomes
active.

This Name will be
seen in the
system tree on the
left side of the
screen.

Events from V 1.60 4 V2

Selecting the Event Monitor type

Select the Event type from the drop down list.

 5 Events from V 1.60

3.0 SNMP Trap - only implemented on the product TMC-1

This description is intended as an overview for this facility which is currently (Nov

2007) only implemented on the TMC-1 product.

Simple Network Management Protocol

This is a communication protocol between management stations and managed objects, (such
as routers and MDUs) and makes use of Management Information Bases (MIB) .
SNMP uses a specified set of commands and queries. An MIB will contain information on
these commands and on the target objects i.e. controllable entities or potential sources of
status information.

A SNMP Event is shown as added to an existing system. Eight events have been added in
this example.

Click on Event to open the list.

Events from V 1.60 6 V2

The Host IP address has been entered. This is the IP address of the unit that has to be
monitored.

The Enterprise OID (Object IDentifiers) has to be entered; for TSL units this is 6853. The
string: .iso.org.dod.internet.private.enterprises. (.1.3.6.1.4.1) is added automatically
(presumed).

The string 6853 is unique to TSL.

If, say, a router is being monitored, the 6853.2 number shown above will be different, using
the published numbers for that manufacturer’s router. The 2 in this example would be the
TSL MIB number.

The number currently published for TSL is actually only 6853

From the MIB: tslMIB OBJECT IDENTIFIER ::= { enterprises 6853 }

The generic trap type is shown as Enterprise Specific from the drop down list.

The Specific Trap will be the number that corresponds to the information required, as
described in the MIB (Management Information Base). See Appendix 1 for the TSL MDU
example.

Decide whether the Active Tally Channel should be Set or Clear for the tally/mnemonic.

Notes:

IANA, Internet Assigned Numbers Authority, assigns the IP and OID numbers.

http://www.iana.org/assignments/enterprise-numbers

and: http://www.alvestrand.no/objectid/1.3.6.1.4.html

The Firewall will need to be disabled (the factory default on a TMC-1) or the Ports 161/162
specifically opened.

 7 Events from V 1.60

When that Trap is sent, the mnemonic entered (Over Temp this example) will be shown on
a UMD.

The UMD screen is shown below.

• Add the event to the UMD via a System Tally.

The use of a System Tally is essential for operation and also allow other Events to be added
to the UMD.

This is a very specific use of the UMD. The text and Tally Lights will change in the event of a
trap being received.

• Write the file to the TMC-1 and go on-line.

Correct communications will show by a green dot against the Events entry when on-line, as is
normal.

Events from V 1.60 8 V2

4.0 TSL UMD Input

Edit Comms Parameters for the data incoming port into the TallyMan unit. The TallyMan
controller will expect standard TSL UMD Protocol.

Incoming tallies start at Address 000. Two are shown above so they will be at address 000
and 001. These may then be mapped to control a tally lamp on any UMD or may be output
to the Tally Output pins etc.

 9 Events from V 1.60

Select the Event.

An incoming tally will show its status in the Specific column.

The incoming tally signal may be set to any Channel. Please see the Tally Section for more
information.

This may then be mapped to a tally function such as activating a tally LED on a UMD.

Events from V 1.60 10 V2

Note: The correct Tally Channel mask must be set in the usual way.

 11 Events from V 1.60

5.0 Trigger Action

There is no interface or port to be set with this event.

Events from V 1.60 12 V2

Select the Event.

Say we are going to use a Tally (or incoming GPI) to trigger an event.

Select the required input tally from the available list.

 13 Events from V 1.60

Now select the required Action.

No Action: Nothing will happen.

Tally Active: The tally will follow the Trigger status, i.e. ON/OFF.

Set Tally: Tally is turned ON (remains ON even when the trigger has gone).

Clear Tally: Tally is turned OFF (remains OFF even when the trigger has gone).

Route: A specific router crosspoint will be made.

Load File: A Router file (.rtr) or a TallyMan File (.tms) will be loaded (Care!).

Reverse route: Inputs/Outputs are reversed on the controlled router.

Copy Route: Routers are effectively paralleled for crosspoint control.

Table Route: This allow control whereby when one destination is switched, another

destination is switched as a slave. This may be on the same or on a

different router.

Toggle Tally: With an incoming tally, say, the tally output will toggle on and then off

with the next action.

Events from V 1.60 14 V2

Tally Active/Set Tally/Clear Tally

The Assigned to output tally of Event is an option for the Events configured.

You may, for example, set a tally with Event 1 and turn this tally off in Event 1 using action
from Event 2.

 15 Events from V 1.60

You may use a Tally ON for example to make a router crosspoint.

Clicking the buttons will call up the router lists.

Double click on the required Source or Destination.

Events from V 1.60 16 V2

Load File.

This will load the router rtr status file . or a new .tms Config file.

Note: With the .tms file you need to be sure that you have programmed the new file with the
appropriate module in order to return to the original file if you wish to retain this automation.

 17 Events from V 1.60

Reverse Route

In the case shown, when Router 1 has Source 1 routed to Destination 10, Router 2 will have
Source 10 routed to Destination 1.

Srce 1

Dst 10

Router 1 Router 2

Dst 1

Srce 10

Events from V 1.60 18 V2

This will reverse route the second Router C2 completely.

Copy Route

This effectively parallels router control.

Router 1: Source 1 is routed to Dest 10
Router 2: Source 1 is routed to Dest 10.

Table Route

This allow control whereby when one destination is switched, another destination is switched
as a slave. This may be on the same or on a different router.

• Select Edit Table

 19 Events from V 1.60

Preset 1: 1 will match each destination and sources with their counterpart or individual
destinations to other destinations etc. may be mapped.

1:1 setting selected.

The two routers are shown. One starts with the system destination number as Destination 1
and the second router is shown with the router destination set as Destination 33.

Events from V 1.60 20 V2

Individual Destinations to destinations selected.

 21 Events from V 1.60

Appendix 1

TSL-MIB DEFINITIONS ::= BEGIN

IMPORTS
enterprises, Opaque
FROM RFC1155-SMI
OBJECT-TYPE
FROM RFC-1212
TRAP-TYPE
FROM RFC-1215;

-- MODULE-IDENTITY
-- FROM SNMPv2-SMI;

-- TSL_MIB; SNMP v1 agent definitions.

-- the following only allowed in SMIv2 (also 0 enumeration of
integers)

-- As of 08/08/03, includes enterprise specific trap definitions
(RFC1215)

-- tslMIB MODULE-IDENTITY
-- LAST-UPDATED "0308080000Z"
-- ORGANIZATION "Television Systems Ltd"
-- CONTACT-INFO "
-- Tim Whittaker
-- Television Systems Ltd
-- Unit 4, King's Grove
-- Maidenhead
-- Berkshire
-- SL6 4DP
--
-- Tel + 44 1628 687200
-- Email: timw@televisionsystems.ltd.uk"
-- DESCRIPTION "MIB module for all TSL products"
-- ::= { enterprises 6853 }

DisplayString ::= OCTET STRING

-- SMIv1 definition of module

tslMIB OBJECT IDENTIFIER ::= { enterprises 6853 }

------------------ Winsoft specific MIB

-- DELETED for mdu12 hardware

-------------- generic alarm MIB (all TSL equipment capable of SNMP
alarms)

alarm OBJECT IDENTIFIER ::= { tslMIB 2 }

alarmIdent OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only

Events from V 1.60 22 V2

 STATUS mandatory
 DESCRIPTION
 "Equipment alarms description and version"
 ::= { alarm 1 }

------- alarm table

alarmTable OBJECT-TYPE
 SYNTAX SEQUENCE OF AlarmEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "The table of alarm entries"
 ::= { alarm 2 }

alarmEntry OBJECT-TYPE
 SYNTAX AlarmEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 " An alarm entry in the table"
 INDEX { alarmTableIndex }
 ::= { alarmTable 1}

AlarmEntry ::= SEQUENCE
 {
 alarmTableIndex INTEGER,
 alarmType INTEGER,
 alarmIndex INTEGER,
 alarmText DisplayString,
 alarmState INTEGER,
 alarmPolarity INTEGER,
 alarmData Opaque
 }

alarmTableIndex OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The index into the table"
 ::= { alarmEntry 1 }

alarmType OBJECT-TYPE
 SYNTAX INTEGER
 {
 internal(1), -- general internal to equipment alarm
 gpi(2), -- from external GPI,
alarmPolarity determines alarmState
 outputFail(3), -- eg MDU12 output fuse, etc
 psuFail(4) -- alarmData is text describing failure
(eg rail values etc)
 }
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "Alarm type"

 ::= { alarmEntry 2 }

 23 Events from V 1.60

alarmIndex OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "Alarm type number"
 ::= { alarmEntry 3 }

alarmText OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "Alarm description"
 ::= { alarmEntry 4 }

alarmState OBJECT-TYPE
 SYNTAX INTEGER
 {
 inactive(1),
 active(2)
 }
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "Alarm state"
 ::= { alarmEntry 5 }

alarmPolarity OBJECT-TYPE
 SYNTAX INTEGER
 {
 notApplicable(1),
 normallyOpen(2),
 normallyClosed(3)
 }
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "Alarm active polarity (notApplicable for non-gpi alarms)"
 ::= { alarmEntry 6 }

alarmData OBJECT-TYPE
 SYNTAX Opaque
 ACCESS read-only
 STATUS optional
 DESCRIPTION
 "Additional alarm data of variable length, according to alarm
type."
 ::= { alarmEntry 7 }

------- end of table

alarmTotal OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The total number of alarms in the table"
 ::= { alarm 3 }

Events from V 1.60 24 V2

alarmLocation OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "The physical location of the equipment generating the alarm"
 ::= { alarm 4 }

alarmEqptTemp OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-only
 STATUS optional
 DESCRIPTION
 "Equipment temperature (in degrees Centigrade)"
 ::= { alarm 5 }

alarmEqptTempHi OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-write
 STATUS optional
 DESCRIPTION
 "Equipment temperature alarm point (degrees Centigrade)"
 ::= { alarm 6 }

alarmTrap TRAP-TYPE
 ENTERPRISE tslMIB
 VARIABLES
 {
 alarmTableIndex,
 alarmType,
 alarmIndex,
 alarmText,
 alarmState,
 alarmPolarity,
 alarmData
 }
 DESCRIPTION
 "An entry in the alarm table has changed state"
 ::= 4

alarmEqptTempHiTrap TRAP-TYPE
 ENTERPRISE tslMIB
 VARIABLES
 {
 alarmEqptTemp
 }
 DESCRIPTION
 "The equipment temperature has exceeded the maximum allowed"
 ::= 5

alarmEqptTempOkTrap TRAP-TYPE
 ENTERPRISE tslMIB
 VARIABLES
 {
 alarmEqptTemp
 }
 DESCRIPTION
 "The equipment temperature is now within limits"
 ::= 6

 25 Events from V 1.60

-------------- MDU12 specific MIB

mdu12 OBJECT IDENTIFIER ::= { tslMIB 3 }

mdu12Ident OBJECT-TYPE
 SYNTAX DisplayString
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "Equipment description and version"
 ::= { mdu12 1 }

mduPowerOn OBJECT-TYPE
 SYNTAX INTEGER
 {
 simultaneous(1),
 sequential(2),
 delayed(3)
 }
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "MDU power-on output sequence"
 ::= { mdu12 2 }

mduSeqDelay OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "Sequential mode delay between outputs"
 ::= { mdu12 3 }

mduOutputTable OBJECT-TYPE
 SYNTAX SEQUENCE OF MduOutputEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "Table of output controls"
 ::= { mdu12 4 }

mduOutputEntry OBJECT-TYPE
 SYNTAX MduOutputEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 " An entry in the output table"
 INDEX {mduOutputIndex}
 ::= { mduOutputTable 1}

MduOutputEntry ::= SEQUENCE
 {
 mduOutputIndex INTEGER,
 mduOutputState INTEGER,
 mduOutputDelay INTEGER
 }

mduOutputIndex OBJECT-TYPE

Events from V 1.60 26 V2

 SYNTAX INTEGER(1..12)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "Output number"
 ::= { mduOutputEntry 1 }

mduOutputState OBJECT-TYPE
 SYNTAX INTEGER
 {
 off(1),
 on(2),
 locked-Off(3), -- locked by admin web page, cannot
change via SNMP
 locked-On(4) -- locked by admin web page, cannot
change via SNMP
 }
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "MDU Output status"
 ::= { mduOutputEntry 2 }

mduOutputDelay OBJECT-TYPE
 SYNTAX INTEGER
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "Output on delay from power on (Delay mode only)"
 ::= { mduOutputEntry 3 }

-- End of table

mduPowerStatus OBJECT-TYPE
 SYNTAX INTEGER
 {
 totalLoss(1),
 input1OK(2),
 input2OK(3),
 allOk(4) -- note: a single input MDU would
report allOk if power is present
 }
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "Status of MDU power inlets"
 ::= { mdu12 5 }

mduPowerStatusTrap TRAP-TYPE
 ENTERPRISE tslMIB
 VARIABLES
 {
 mduPowerStatus
 }
 DESCRIPTION
 "The power input to the MDU has changed state"
 ::= 7

END

